data dredging:数据疏浚
数据疏浚(data dredging)有时候指得是“数据捕鱼(data fishing)”,它是一个数据挖掘(data mining)实践,分析其中大批量的数据(data)来寻找数据间可能的关系。相反地,传统科学方法以假设开始,紧接着测试数据。有时候会引向不道德的目的,数据疏浚常常避免传统的数据挖掘技术,并会导致结论得出得太早。数据疏浚有时候被描述成“从数据集中寻找比实际含有的更多的信息。” 数据疏浚(data dredging)有时候导致变量间的关系很重要,事实上,和数据在合法决定这种联想前要求更多研究时宣布的一样。很多变量可能通过偶然机会相关,其它的可能因为一些未知原因彼此联系。为了有效评估任意两个变量间的关系,需要进一步的研究,这其中孤立的变量和控制组形成对照。数据疏浚有时候用于呈现未核实的同时发生的变量,就像它们得出的有效结论,领先于其它相似研究。 尽管数据疏浚(data dredging)常常用得不恰当,但它查找令人惊讶的关系时是很实用的方式,这是其它方法发现不了的。但是,由于同时发生的变量不构成它们关系的信息(这可能、终究只是巧合),要求进一步的分析来得到实用结论。
最近更新时间:2010-08-04 翻译:徐艳EN
相关推荐
-
AI能源使用增加,技术工作负载限制IT
能源的可用性和成本正在成为技术使用的制约因素,随着企业AI应用程序增加计算需求,IT经理必须计划解决这一问题。 […]
-
减少关键技术债务的策略
现在的IT领导者、项目经理和软件开发领导者必须优先考虑预防技术债务。 技术债务会带来深远的负面影响。出于速度或 […]
-
生成式AI能耗增加,但尚不清楚投资回报率
在为生成式AI构建商业案例时,IT领导者需要考虑很多成本考虑因素,有些显而易见,有些则是隐藏成本。 其中最明显 […]
-
CrowdStrike事件揭露关于IT的残酷真相
美国立法者希望CrowdStrike首席执行官George Kurtz解释其软件更新如何导致数千次航班取消、医 […]