data dredging:数据疏浚
数据疏浚(data dredging)有时候指得是“数据捕鱼(data fishing)”,它是一个数据挖掘(data mining)实践,分析其中大批量的数据(data)来寻找数据间可能的关系。相反地,传统科学方法以假设开始,紧接着测试数据。有时候会引向不道德的目的,数据疏浚常常避免传统的数据挖掘技术,并会导致结论得出得太早。数据疏浚有时候被描述成“从数据集中寻找比实际含有的更多的信息。” 数据疏浚(data dredging)有时候导致变量间的关系很重要,事实上,和数据在合法决定这种联想前要求更多研究时宣布的一样。很多变量可能通过偶然机会相关,其它的可能因为一些未知原因彼此联系。为了有效评估任意两个变量间的关系,需要进一步的研究,这其中孤立的变量和控制组形成对照。数据疏浚有时候用于呈现未核实的同时发生的变量,就像它们得出的有效结论,领先于其它相似研究。 尽管数据疏浚(data dredging)常常用得不恰当,但它查找令人惊讶的关系时是很实用的方式,这是其它方法发现不了的。但是,由于同时发生的变量不构成它们关系的信息(这可能、终究只是巧合),要求进一步的分析来得到实用结论。
最近更新时间:2010-08-04 翻译:徐艳EN
相关推荐
-
首席信息官如何减少技术债务
虽然债务曾经被简单地称为“欠款”,但技术采用率的提高带来新型债务,困扰着公司和IT领导者。技术债务是指与依赖次 […]
-
区块链与传统数据库:区别和用例
区块链和数据库技术有很多相似之处和不同之处,它们经常被拿来比较。 虽然区块链和数据库技术都专注于存储和管理数据 […]
-
专家称:美国政府入股英特尔无法解决长期困境
近日英特尔与美国政府达成协议,美国政府将入股英特尔,此举可能有助于应对科技行业的危机,但这并不意味着这家陷入困 […]
-
2025年如何吸引科技人才:7个要点
在争夺人才时,从首席信息官到一线招聘人员,都应该了解如何吸引出色的IT和技术团队。 提高工资、提供工作与生活的 […]