data dredging:数据疏浚
数据疏浚(data dredging)有时候指得是“数据捕鱼(data fishing)”,它是一个数据挖掘(data mining)实践,分析其中大批量的数据(data)来寻找数据间可能的关系。相反地,传统科学方法以假设开始,紧接着测试数据。有时候会引向不道德的目的,数据疏浚常常避免传统的数据挖掘技术,并会导致结论得出得太早。数据疏浚有时候被描述成“从数据集中寻找比实际含有的更多的信息。” 数据疏浚(data dredging)有时候导致变量间的关系很重要,事实上,和数据在合法决定这种联想前要求更多研究时宣布的一样。很多变量可能通过偶然机会相关,其它的可能因为一些未知原因彼此联系。为了有效评估任意两个变量间的关系,需要进一步的研究,这其中孤立的变量和控制组形成对照。数据疏浚有时候用于呈现未核实的同时发生的变量,就像它们得出的有效结论,领先于其它相似研究。 尽管数据疏浚(data dredging)常常用得不恰当,但它查找令人惊讶的关系时是很实用的方式,这是其它方法发现不了的。但是,由于同时发生的变量不构成它们关系的信息(这可能、终究只是巧合),要求进一步的分析来得到实用结论。
最近更新时间:2010-08-04 翻译:徐艳EN
相关推荐
-
量子AI:它将如何影响商业世界
在当下AI的黄金时代,人们对量子计算的兴趣开始激增,因为它有可能提供前所未有的计算能力。 为此,处于技术前沿的 […]
-
量子计算的现状:企业需要知道什么
我们很难明确说明量子计算的现状。这项新兴技术目前面对的是不断变化的主张、不确定的时间表和分散的技术格局。 考虑 […]
-
如何保护AI基础设施:最佳做法
AI和生成式AI给企业带来巨大的创新机会,但随着这些工具变得越来越普遍,它们也吸引着恶意攻击者来探测其潜在漏洞 […]
-
最常见的数字身份验证方式?
数字身份验证是验证用户或设备身份的过程,以便能够访问敏感应用程序、数据和服务。现在有多种方法可以验证身份。以下 […]