text mining:文本挖掘
文本挖掘(text mining)是对自然语言正文中所包含数据的分析。文本挖掘将非结构化数据中的词和短语转化成数值,这些数值可以连接到一个数据库中的结构化数据并且可被传统数据挖掘技术分析。 文本挖掘(text mining)在处理以下任务时尤其有用: 人们普遍认为,非结构式数据大多存在于文本文件中,它在一个组织数据中所占比例至少达八成。由于自然语言正文通常是矛盾的,所以文本挖掘工作很有挑战性。这些矛盾包含由语义、句法和俚语所引起的意义不明确。 另见全文数据库(full text database)。
最近更新时间:2010-05-10 翻译:徐艳EN
相关推荐
-
为什么CIO应雇佣年长的IT员工:战略优势
由于全球IT人才短缺,企业不应忽视年长员工。 根据Manpower Group的2025年全球人才短缺报告,全 […]
-
首席信息官如何减少技术债务
虽然债务曾经被简单地称为“欠款”,但技术采用率的提高带来新型债务,困扰着公司和IT领导者。技术债务是指与依赖次 […]
-
区块链与传统数据库:区别和用例
区块链和数据库技术有很多相似之处和不同之处,它们经常被拿来比较。 虽然区块链和数据库技术都专注于存储和管理数据 […]
-
专家称:美国政府入股英特尔无法解决长期困境
近日英特尔与美国政府达成协议,美国政府将入股英特尔,此举可能有助于应对科技行业的危机,但这并不意味着这家陷入困 […]