text mining:文本挖掘
文本挖掘(text mining)是对自然语言正文中所包含数据的分析。文本挖掘将非结构化数据中的词和短语转化成数值,这些数值可以连接到一个数据库中的结构化数据并且可被传统数据挖掘技术分析。 文本挖掘(text mining)在处理以下任务时尤其有用: 人们普遍认为,非结构式数据大多存在于文本文件中,它在一个组织数据中所占比例至少达八成。由于自然语言正文通常是矛盾的,所以文本挖掘工作很有挑战性。这些矛盾包含由语义、句法和俚语所引起的意义不明确。 另见全文数据库(full text database)。
最近更新时间:2010-05-10 翻译:徐艳EN
相关推荐
-
什么是供应商风险管理(VRM)?企业指南
每个企业都依赖第三方供应商提供服务、技术或其他组件。但随着供应商的增加,企业的供应链都会面临:攻击面扩大和风险 […]
-
CIO转向ESG技术作为可持续性领导力的一部分
CIO(CIO)对企业环境可持续性工作至关重要,特别是在选择技术方面,以支持此类工作。 这意味着CIO应该了解 […]
-
比较CompTIA Cloud+ 与 Cloud Essentials+ 认证
现在,云认证就像天上的云朵一样普遍。很多供应商采取独特的方法以使他们的认证计划脱颖而出。而其中有一家供应商,C […]
-
量子AI:它将如何影响商业世界
在当下AI的黄金时代,人们对量子计算的兴趣开始激增,因为它有可能提供前所未有的计算能力。 为此,处于技术前沿的 […]