Monte Carlo method:蒙特卡洛方法
蒙特卡洛方法(Monte Carlo method),也叫蒙特卡洛分析(Monte Carlo analysis),是一种使用随机抽样统计来估算数学函数的计算方法。它需要一个良好的随机数源。这种方法往往包含一些误差,但是随着随机抽取样本数量的增加,结果也会越来越精确。 蒙特卡洛方法以其在第二次世界大战时被用于原子弹的设计而闻名于世。现在它也已经被应用于多种领域,如超高速公路的运输流量分析、行星演变模型的建立以及股票市场波动的预测。这种方法同样也可应用于集成电路设计、量子力学和通信工程。
蒙特卡洛方法在纯数学方面一般用来求解一个函数的定积分。它的计算过程如下:先在一个区间或区域内随机抽取一定数量的独立变量样本,然后求相应的独立因变量的平均值,最后用随机样本所在区间(或区域)的长度(或大小)除以所求出的平均值。它与传统的估算定积分的方法有很大差别,传统方法在区间或区域内抽取样本点时是间隔相等、均匀抽取的。
最近更新时间:2008-06-17 EN
相关推荐
-
AI能源使用增加,技术工作负载限制IT
能源的可用性和成本正在成为技术使用的制约因素,随着企业AI应用程序增加计算需求,IT经理必须计划解决这一问题。 […]
-
减少关键技术债务的策略
现在的IT领导者、项目经理和软件开发领导者必须优先考虑预防技术债务。 技术债务会带来深远的负面影响。出于速度或 […]
-
生成式AI能耗增加,但尚不清楚投资回报率
在为生成式AI构建商业案例时,IT领导者需要考虑很多成本考虑因素,有些显而易见,有些则是隐藏成本。 其中最明显 […]
-
CrowdStrike事件揭露关于IT的残酷真相
美国立法者希望CrowdStrike首席执行官George Kurtz解释其软件更新如何导致数千次航班取消、医 […]