genetic programming:遗传编程
遗传编程(genetic programming)是利用生物进化思想来解决复杂问题的一种编程模型。在大量的程序中,最有效的程序是那些可以与其他程序竞争或兼容而生存下来,可以继续达到解决方案需求的程序。遗传编程对于解决那些有大量变动变量的问题(如与人工智能有关的问题)是最适合的方法。遗传编程模型一般与LISP和规划编程语言结合使用,而且它还可以与C语言以及其他语言结合使用。 遗传编程可以被视为遗传算法的一种扩展,遗传算法是一种从一系列的结果中测试并选择出最佳方案的模型。选择最成功的程序有两种方案,一个是兼容方案,一种是锦标赛法或者竞争方案。使用遗传编程的一个难点就是确定适应度函数,这是一个程序能够达到最终目标的度。一个简单的适于遗传编程的例子就是设计用于射击的程序。未击中目标的子弹距离靶心的距离将决定适应度函数。 遗传编程是一个新的方法,程序员要掌握这种方法需要投入大量的时间来学习。
最近更新时间:2008-06-17 EN
相关推荐
-
AI能源使用增加,技术工作负载限制IT
能源的可用性和成本正在成为技术使用的制约因素,随着企业AI应用程序增加计算需求,IT经理必须计划解决这一问题。 […]
-
减少关键技术债务的策略
现在的IT领导者、项目经理和软件开发领导者必须优先考虑预防技术债务。 技术债务会带来深远的负面影响。出于速度或 […]
-
生成式AI能耗增加,但尚不清楚投资回报率
在为生成式AI构建商业案例时,IT领导者需要考虑很多成本考虑因素,有些显而易见,有些则是隐藏成本。 其中最明显 […]
-
CrowdStrike事件揭露关于IT的残酷真相
美国立法者希望CrowdStrike首席执行官George Kurtz解释其软件更新如何导致数千次航班取消、医 […]