genetic programming:遗传编程
遗传编程(genetic programming)是利用生物进化思想来解决复杂问题的一种编程模型。在大量的程序中,最有效的程序是那些可以与其他程序竞争或兼容而生存下来,可以继续达到解决方案需求的程序。遗传编程对于解决那些有大量变动变量的问题(如与人工智能有关的问题)是最适合的方法。遗传编程模型一般与LISP和规划编程语言结合使用,而且它还可以与C语言以及其他语言结合使用。 遗传编程可以被视为遗传算法的一种扩展,遗传算法是一种从一系列的结果中测试并选择出最佳方案的模型。选择最成功的程序有两种方案,一个是兼容方案,一种是锦标赛法或者竞争方案。使用遗传编程的一个难点就是确定适应度函数,这是一个程序能够达到最终目标的度。一个简单的适于遗传编程的例子就是设计用于射击的程序。未击中目标的子弹距离靶心的距离将决定适应度函数。 遗传编程是一个新的方法,程序员要掌握这种方法需要投入大量的时间来学习。
最近更新时间:2008-06-17 EN
相关推荐
-
Gartner预测价格上涨将影响技术支出
本周Gartner预测,今年全球IT支出将增长近两位数,但他们表示,大部分增长将源于涨价:IT产品和服务价格高 […]
-
2025年12个企业风险管理趋势
在很多企业中,企业风险管理已经占据中心地位,随着这些企业努力应对经济不确定性带来的影响–先是新冠肺 […]
-
2025年重塑CIO角色的8个因素
企业继续将技术视为未来成功和增长的关键,这将促使2025年IT支出增加。 研究和咨询公司Gartner估计,明 […]
-
英特尔CEO Pat Gelsinger离职;董事会寻找新CEO
近日英特尔宣布首席执行官Pat Gelsinger退休,结束他在这家公司近四年的领导生涯,这期间他帮助这家陷入 […]