Euler’s constant:欧拉常数
欧拉常数(Euler’s constant)有时也称为gamma或者Euler-Mascheroni常数,它的精确值为0.577215664901532860606512090082…(就像圆周率pi一样)。 欧拉常数虽然不像pi或e那样为人所熟知,但是它很重要,尤其是在数论以及某些涉及计算和公式的工程中。 欧拉常数是由表达式(1 + 1/2 + 1/3 + 1/4 + … + 1/n)-ln(n)中n趋于无穷时的极限定义的。Ln表示自然对数。欧拉常数已经精确到了小数点后1000000位,不过一般约等于0.577216。
最近更新时间:2009-07-29 EN
相关推荐
-
量子AI:它将如何影响商业世界
在当下AI的黄金时代,人们对量子计算的兴趣开始激增,因为它有可能提供前所未有的计算能力。 为此,处于技术前沿的 […]
-
量子计算的现状:企业需要知道什么
我们很难明确说明量子计算的现状。这项新兴技术目前面对的是不断变化的主张、不确定的时间表和分散的技术格局。 考虑 […]
-
如何保护AI基础设施:最佳做法
AI和生成式AI给企业带来巨大的创新机会,但随着这些工具变得越来越普遍,它们也吸引着恶意攻击者来探测其潜在漏洞 […]
-
最常见的数字身份验证方式?
数字身份验证是验证用户或设备身份的过程,以便能够访问敏感应用程序、数据和服务。现在有多种方法可以验证身份。以下 […]