automated speech recognition:自动语音识别
自动语音识别(Automatic Speech Recognition,ASR)的目标是让计算机能够辨别出人们所说的话的内容。ASR通常有以下几种分类方法:(1) 特定人和非特定人;(2) 小词汇量、中词汇量和大词汇量;(3) 语音命令(孤立词)识别、关键词检出,以及连续语音识别(听写)等。其中语音命令识别引擎要求用户所说的语音中最多只能含有一个词表中定义的词;而关键词检出引擎中则允许用户所说的语音中除了含有一个或多个词之外,还可以包含其它无关的内容,识别器将只检测出那些在词表中定义过的词,同时忽略其它无关的内容;连续语音识别引擎则会把用户所说的语音逐字逐句地转换为文字,是实现“声音”到“文字”转换的技术,它的实现中涉及到声学模型和语言模型:声学模型用以从声音信号中识别出“音(例如拼音)”,而语言模型用以把“音”转换成“字(例如有意义的文本语句)”。
最近更新时间:2008-12-15 EN
相关推荐
-
如何保护AI基础设施:最佳做法
AI和生成式AI给企业带来巨大的创新机会,但随着这些工具变得越来越普遍,它们也吸引着恶意攻击者来探测其潜在漏洞 […]
-
最常见的数字身份验证方式?
数字身份验证是验证用户或设备身份的过程,以便能够访问敏感应用程序、数据和服务。现在有多种方法可以验证身份。以下 […]
-
零信任策略使网络面临横向威胁
很多公司忽视零信任安全的核心原则:假设网络已经受到攻击。 企业管理协会(EMA)的研究发现这个被忽视的零信任原 […]
-
企业中通行密钥的好处和挑战
尽管密码是主要身份验证方式,但它们是企业安全的薄弱环节。数据泄露事故和网络钓鱼攻击利用被盗或弱密码,让企业面临 […]