automated speech recognition:自动语音识别
自动语音识别(Automatic Speech Recognition,ASR)的目标是让计算机能够辨别出人们所说的话的内容。ASR通常有以下几种分类方法:(1) 特定人和非特定人;(2) 小词汇量、中词汇量和大词汇量;(3) 语音命令(孤立词)识别、关键词检出,以及连续语音识别(听写)等。其中语音命令识别引擎要求用户所说的语音中最多只能含有一个词表中定义的词;而关键词检出引擎中则允许用户所说的语音中除了含有一个或多个词之外,还可以包含其它无关的内容,识别器将只检测出那些在词表中定义过的词,同时忽略其它无关的内容;连续语音识别引擎则会把用户所说的语音逐字逐句地转换为文字,是实现“声音”到“文字”转换的技术,它的实现中涉及到声学模型和语言模型:声学模型用以从声音信号中识别出“音(例如拼音)”,而语言模型用以把“音”转换成“字(例如有意义的文本语句)”。
最近更新时间:2008-12-15 EN
相关推荐
-
比较CompTIA Cloud+ 与 Cloud Essentials+ 认证
现在,云认证就像天上的云朵一样普遍。很多供应商采取独特的方法以使他们的认证计划脱颖而出。而其中有一家供应商,C […]
-
量子AI:它将如何影响商业世界
在当下AI的黄金时代,人们对量子计算的兴趣开始激增,因为它有可能提供前所未有的计算能力。 为此,处于技术前沿的 […]
-
量子计算的现状:企业需要知道什么
我们很难明确说明量子计算的现状。这项新兴技术目前面对的是不断变化的主张、不确定的时间表和分散的技术格局。 考虑 […]
-
如何保护AI基础设施:最佳做法
AI和生成式AI给企业带来巨大的创新机会,但随着这些工具变得越来越普遍,它们也吸引着恶意攻击者来探测其潜在漏洞 […]